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Enantioselective Synthesis of p-Hydroxy-o-amino Acid Esters by Aldol Coupling
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Abstract: A variety of chiral B-hydroxy-o-amino acids and derivatives thereof can be synthesized
enantioselectively using the aldol reaction of an aldehyde, the glycinate 1 and the cinchonidine-
derived catalyst 2, as indicated in Schemes 1 and 2 and Table 1. © 1999 Elsevier Science Ltd. AHl rights reserved.

Recent studies in this laboratory have resuited in the development of an excellent catalyst for highly
enantioselective alkylation!-2 and Michael addition reactions3 under phase transfer conditions. In addition, a
rational and predictive mechanistic model had been provided along with supportive experimental evidence.!-2
Among the outstanding applications of this methodology is the asymmetric synthesis of oi-amino acids with up to
400 : 1 enantioselection.]:# Reported herein is the extension of this system to the synthesis of chiral 8-hydroxy-
o-amino acids by aldol coupling of aldehydes with the trimethylsilyl enol ether derivative of tert-butylglycinate-
benzophenone Schiff base (1) using the cinchonidine-derived bifluoride salt 2 as catalyst (Scheme 1).5:6

A solution of 1 in CHpCly-hexane at -78 °C was treated with 5 equiv of isobutyraldehyde and a solution
of 10 mole % of 2 in CH,Cl, (final solvent ratio 3 : 1 hexane—-CH,Clp). After 7 h at -78 °C, the reaction
product was isolated by quenching with saturated aqueous NH4Cl solution and extraction. The resulting isomeric
mixture of oxazolidine and B-hydroxy-o-amino acid ester Schiff base with benzophenone was transformed by
exposure to 0.5% aqueous citric acid for 15 h at 23 °C into the principal product, the syn a-amino-f-hydroxy
ester syn-3, and the minor product anti-3 (ratio of 6 : 1). Column chromatography of the mixture on silica gel

using 4% MeOH in CH,Cl; for elution provided pure syn-3 in 61% yield and anti-3 in 9% yield. The
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enantiomeric purity of these amino esters was established by transformation using thiocarbonyl bisimidazole
(CH2Ch, at 23 °C) into the oxazolidine-2-thione derivatives 4a and 4b and HPLC analysis using a Chiral Pak AD
column using 10% isopropyl alcohol in hexanes for elution; found for 4a, 95% ee and for 4b, 83% ee. The
absolute configuration of syn-3 was established as (25,3R) by comparison of its optical rotation, o] g +11.9
(c=1.0, CHCIl3) with an authentic sample of the enantiomer;’ that of 4b was similarly determined.”-8
Experimental procedures and data for the syntheses of syn-3, anti-3, 4a and 4b follow below.? The conversion
of 4a and 4b to the free acids corresponding to syn-3 and anti-3 can be carried out as previously described. !0

The aldol coupling of 1 in the presence of catalyst 2 with a number of other aldehydes was studied; the
results are summarized in Table 1. Variability in the ratio of syn to anti aldol products, syn-5 to anti-5, was
observed with lower ratios being associated with unbranched aldehydes of the type RCH,CH,CHO. On the other
hand the highest syn/anti ratio, 13 : 1 was found for cyclohexanecarboxaldehyde. In this case the high
preference for formation of syn-§, R = C¢H1j, seems quite consistent with the mechanistic model proposed
previously,!2 the high preference for the 28 configuration in the products 5 being predicted. The special feature
of cyclohexanecarboxaldehyde which is responsible for the high syn/anti selectivity is suggested by the model to
be substantial van der Waals (dispersion) attraction between the cyclohexyl group of the aldehyde and the fert-
butyl and E-phenyl groups of the enolate substrate in the contact quaternary ammonium ion-enolate ion pair.1.2
The same model leads to the expectation of lower syn/anti ratios for the unbranched aldehydes.

The aldol products 5, R = CI(CHy)3, illustrate a broader utility of the new methodology as outlined in
Scheme 2. The mixture 7a + 7b was separated chromatographically and transformed into the diastereomeric 3-
hydroxy-(S)-pipecolic acids 8a and 8b.!l Similarly, after chromatographic separation, 9a and 9b were
converted to the diastereomeric amino acids 10a and 10b, as shown.!2

The syntheses of B-hydroxy-oi-amino acids and derivatives described herein provide ready access to these

useful substances. 3

H QH
Table 1. Data for nj\(“*'&‘ (syn-5) and n/\(m’a“ (ant5) and the

corresponding thlocarbamates (6a and 6b, respectlvely)

solvent temp time yield ee (%) Ry (30% EtOAc-Hex)
R Hex-CHCl,  (°C) (h) of5(%) syn/anti 6a 6b 6a 6b
Pr 3:1 -78 7 70 6/1 95 83 0.51 045
c-Hex 5:1 -50 1 81 13/1 88 46 054 045
n-Hex 3:1 -78 2 79 3/1 89 a1 055 0.45
CKCHy)a- 5:1 -78 2 48 1/1 82 86 0.40 0.31
Ph(CHy),- 3:1 -78 6 64 1/1 72 86 0.48 0.43
i-Bu 5:1 -45 2 61 3/1 76 70 0.56 0.48

8ee values were determined after chromatographic separation of syn-5 and anti-5 by
conversion to 6a and 6b and analysis by HPLC using a Chiral Pak AD column with 10%
i-PrOH-Hexanes for elution at 23 °C.
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Scheme 2
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